The Effect of Chloride and Orthophosphate on the Release on Iron from a Drinking Water Distribution System Pipe

Darren A. Lytle U.S. Environmental Protection Agency ORD, NRMRL, WSWRD, TTEB, Cincinnati, Ohio 45268

Prof. V.L. Snoeyink and Dr. Pankaj Sarin University of Illinois Urbana-Champaign, Illinois 61801

Building a scientific foundation for sound environmental decisions

Acknowledgements

Keith Kelty, Barbara Francis, Christy
Frietch, Son Cao, Ian Lasacke, Cheryl James,
Tim Hodapp, and Tori Blackschlager- U.S.
EPA

Building a scientific foundation for sound environmental decisions

Iron Release/Iron Corrosion

- Particle formation
- Discolored water
- Sink for trace contaminants
- Staining of fixtures, clothing
- Metallic tasting water
- Flow restriction
- Oxidant demand
- · Biofilm

Building a scientific foundation for sound environmental decisions

Discussion Corrosion is Different from Iron Release

Corrosion of iron is the conversion of "metallic iron" to an oxidized form, either soluble or an oxidized scale.

- Fe \rightarrow Fe²⁺ + 2e⁻
- Usually measured as weight loss from metallic iron

Iron release is the transport of iron, in soluble form or as a particle, from corrosion scale or metal to bulk water.

- Cumulative effect of corrosion, hydraulic scouring and dissolution of corrosion scales.
- Usually measured as concentration of iron in bulk water

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental

decisions

Study Objectives

Examine the effect of chloride and orthophosphate on the release of iron from an old cast iron pipe section

Chloride and Orthophosphate

Chloride

- Pitting corrosion
- Fluctuating and changing water quality

Orthophosphate

- Lead and copper corrosion control
- Iron/red water control ??

Building a scientific foundation for sound environmental decisions

Iron Pipe Studies

Iron Release and Particle Properties

90 year old cast iron pipe section from CWW

Building a scientific foundation for sound environmental decisions

Experimental

Protocol

- 90 year old cast iron pipe section (4" diameter)
- Sample from center of pipe after 23.5 hours stagnation (72 hrs)
- Measure REDOX, pH, DO, iron, color, NTU, metals (ICAP)
- Slowly fill with Cincinnati tap water from bottom (rate 50 ml/min, 2-3 volumes)
 - NaCl or Na₃PO₄
- Glass cover

RESEARCH & DEVELOPMENT Building a scientific foundation

for sound

decisions

environmental

Experimental Water Chemistry

Calcium 32 mg/L 9 mg/L Magnesium Sodium 16 mg/L Potassium 3 mg/L 65 mg/L **SO**₄ 5 mg/L SiO₂ 8.65 pH CI 12 mg/L

Building a scientific foundation for sound environmental decisions

The Effect of Chloride and Phosphate on Iron Release

Building a scientific foundation for sound environmental decisions

The Effect of Chloride and Phosphate on Turbidity

Building a scientific foundation for sound environmental decisions

The Effect of Chloride and Phosphate on Apparent Color

Building a scientific foundation for sound environmental decisions

The Effect of Chloride and Phosphate on Redox Potential

Building a scientific foundation for sound environmental decisions

Phosphate Demand/Release

Building a scientific foundation for sound environmental decisions

"Red Water" Formation

Building a scientific foundation for sound environmental decisions

Iron Pipe Scale Structure

Outer Layer- relatively thin, comprised of Fe (III) compounds

Shell-like Layer- relatively dense, thin, primarily Fe_3O_4 and geothite, conductive

Porous Interior- mostly Fe (II) compounds, porous, reservoir of Fe2+, attracts anions to maintain electroneutrality

Building a scientific foundation for sound environmental decisions

Electron Transfer/ Redox Couples/Fe(II) Generation

Fe(s) +
$$2H^+$$
 \longrightarrow Fe²⁺ + $H_2(g)$
Fe(s) + $2FeOOH(s)$ + $2H^+$ \longrightarrow $3Fe^{2+}$ + $4OH^-$ (Kuch mechanism)
 $O_2(g)$ + $4Fe^{2+}$ + $2H_2O$ \longrightarrow $4Fe^{3+}$ + $4OH^-$
 $+OCI$ + $2Fe^{2+}$ + H_2O \longrightarrow $2Fe^{3+}$ + CI^- + OH^-
-Dissolution of Fe(II) solids in porous interior

-Reductive dissolution of Fe(III) solids/microorganisms

Building a scientific foundation for sound environmental decisions

Role of Chloride and Phosphate

Fe²⁺ + 2H₂O +Cl⁻
$$\longrightarrow$$
 Fe(OH)₂(s) + 2HCl - accelerate corrosion, electroneutrality 3Fe²⁺ + 2PO₄³⁻ \longrightarrow Fe₃(PO₄)₂(s) - solubility Fe³⁺ + PO₄³⁻ \longrightarrow FePO₄(s) - solubility Fe³⁺ + OH⁻ + PO₄³⁻ \longrightarrow FeOOH-PO₄ particle - porosity, reductive dissolution, Kuch mechanism

Building a scientific foundation for sound environmental decisions

Conclusions

- Chloride rapidly enhanced the release of iron
- Orthophosphate reduced iron release of iron
- Orthophosphate also reduced color and turbidity
- Iron pipe section has a large oxidant demand
- Iron pipe consumes orthophosphate